Important synergy role of glutathione (GSH) and catalase in the propagation of yeast Saccharomyces cerevisiae under H2O2 stress

JULIEN BILLARD (1), Huu Vang Nguyen (2), Philippe Cario (3), Mustapha Nedjma (4)
(1) R&D Department, Spindal AEB Group, Gretz-Armainvilliers, France; (2) INRA, AgroParisTech, Thiverval-Grignon, France; (3) AEB Group, Brescia, Italy; (4) nedjman@aol.com

Glutathione is an important antioxidant against the toxic effects of O2 and other oxidative compounds; hence, it would be helpful to keep beer flavor when increasing GSH content of brewer’s yeast. GSH is synthesized by two sequential reactions in Saccharomyces cerevisiae catalyzed by γ-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), and the GSH1 gene is responsible for coding the former enzyme, which is crucial to GSH synthesis. As a smaller peptide, GSH can be excreted to the outside of the yeast cells. Glutathione can be produced by an enzymatic method and a direct fermentative method. In the latter method, S. cerevisiae and Candida utilis are currently used to produce glutathione on an industrial scale. Factors for increasing glutathione production have been investigated. The rates of GSH production of the wild-type strains usually vary from 0.1 to 1%, dry matter. Medium culture conditions, selected yeast strains, and yeast breeding are key factors for increasing the GSH concentration. A nucleophilic center of cysteine is responsible for the high reductive potential of GSH. The role of GSH in redox regulation of gene expression has been described in many studies, highlighting the couple properties of GSH/GSSG and the reduced SH-Group of GSH. It can participate in the regulation of the cell cycle and is an essential reductant during normal metabolism in yeast strains. We investigated the influence of feedstock amino acids, salt, carbon, and nitrogen sources on glutathione production by S. cerevisiae. Glucose, yeast extract, oligoelements, and amino acids were found to be suitable feedstock. Highest glutathione production was obtained after cultivation with shaking for 72 h in selective medium and growing conditions. Using this medium, the glutathione concentration increased 3- to 5-fold to 95–110 mg/g of dry matter compared to YM basal medium. The increase of glutathione during the propagation resulted in the protection of the yeast cells against hydrogen peroxide production (H2O2). In the mean time, the addition of catalase activity during propagation increased the protection of the yeast cells from osmotic and oxidative stresses, demonstrating that these are the major causes of the stress response throughout the process of beer biomass production. In fact, the synergy of glutathione and catalase during the yeast propagation leads to an increase the number of yeast cells produced and causes a positive impact on yeast metabolism.

Julien Billard is currently a microbiologist in the Research and Development laboratory of AEB Group. He is currently working on the selection of yeast strains for fermentation of beer and specific propagation for expression of MAL and GSH.