Changes in protein compositions during malting of common wheat (Triticum aestivum L.) and their influence on beer quality

ANDREA E. FALTERMAIER (1), Thomas Becker (2), Elke K. Arendt (1), Martina Gastl (2)
(1) School of Food and Nutritional Sciences, National University of Ireland, University College Cork, Cork, Ireland; (2) Technische Universität München-Weihenstephan, Lehrstuhl für Brau- und Getränketechnologie, Freising, Germany

During the malting process, high molecular weight storage proteins are degraded by proteolytic enzymes to both mid-size and small peptides as well as to amino acids. Until now, only a little knowledge has existed about the chemical pathways and the factors that influence those degradation reactions during malting. In this paper, a fundamental study on protein changes taking place during the malting of common wheat (Triticum aestivum L.) is presented. Changes in content and composition of molecular fractions were investigated during the steeping, germination, and kilning process. Pilot-scale malting trials with a standard malting regime (7 days of germination at 15°C with a steeping degree of 45%) were done in order to ensure a comparable malt modification at the end. Samples taken of every single malting step and additionally daily during germination were analyzed to get a deeper insight into proteolytic breakdown which takes place during the malting process. Variations in protein content and composition in relationship to the degree of modification are shown. The malt was analyzed according to ASBC and EBC methods. Protein fractions were analyzed using a lab-on-a-chip technique, which separates the proteins—based on their molecular weight—by capillary electrophoresis, and was supported by using two-dimensional gel electrophoresis. In addition, the impact of malting on the ultrastructure of wheat was evaluated using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Using those techniques, it is possible to visualize the changes in structure and thereby to get a deeper insight into the kernel itself. All results were compared to the changes taking place during the malting of barley. By interpretation of those results, possibilities for the optimization of final beer quality depending on the degree of modification of the used malt can be shown.

Andrea Faltermaier studied food technology at the Technische Universität München (TUM), Weihenstephan, Germany. She performed her diploma thesis work at the Lehrstuhl für Brau- und Getränketechnologie, TUM-Weihenstephan. Since 2009 Andrea has been a Ph.D. student at the University College Cork (UCC), and she received the InBev-Baillet Latour Scholarship in Brewing and Malting. Her Ph.D. project, a cooperation between UCC and TUM, deals with studies on the application of wheat in brewing and functional beverages.