A new fluorometric method to determine sulfite- and thiol-containing compounds in beer

Victor Abrahamsson (1), Nikoline J. Nielsen (2), Marianne L. Lund (2), MOGENS L. ANDERSEN (2)
(1) Linnaeus University, Kalmar, Sweden; (2) University of Copenhagen, Copenhagen, Denmark

Sulfite is an important antioxidant in beer, which has an important effect on oxidative stability. A method for sulfite determination in beer was developed based on formation of adducts with the maleimide-derived probe ThioGlo® 1 followed by high-performance liquid chromatography (HPLC) separation and fluorescence detection. Two peaks corresponding to sulfite derivatives were observed. HPLC with mass spectrometric detection showed that the two derivatives had identical mass spectra and confirmed that they were derived from sulfite. The quantification of sulfite in beer was affected by matrix effects, which made it necessary to use a matrix-matched calibration curve. ThioGlo® also forms adducts with thiols and a peak assigned to co-eluting thiol adducts was also seen in the HPLC chromatograms. The level of thiols in the beers were quantified as glutathione equivalents. The role of sulfite and thiols as antioxidants in beer was tested by addition of the reactive oxygen species hydrogen peroxide. The levels of sulfite and thiols decreased in parallel upon addition of increasing amounts of hydrogen peroxide. The decreases in concentrations were not proportional to the amount of hydrogen peroxide added. Extensive addition of hydrogen peroxide did not remove all the thiols, whereas sulfite was completely consumed. The experiment suggests that some thiols in beer may also protect against oxidation, and that synergistic effects together with sulfite may be important for the shelf life of beer.

Mogens L. Andersen is an associate professor. He graduated from the Department of Chemistry at the University of Copenhagen in 1990, where he also obtained his Ph.D. degree in 1993 based on studies of mechanisms of organic electrochemical reactions. In 1996 he began working as an assistant professor in the Food Chemistry Group, Department of Food Science, University of Copenhagen, where he now is an associate professor. His research focuses on using electron spin resonance spectroscopy for studies of oxidative reactions in foods. This has included mechanistic studies of radical reactions in beer, meat, oils/lipids, and other foods. The work has also included mechanistic studies of antioxidants in foods, as well as development of methods for early prediction of oxidative stability. He has published 66 peer-reviewed scientific papers.

VIEW PRESENTATION