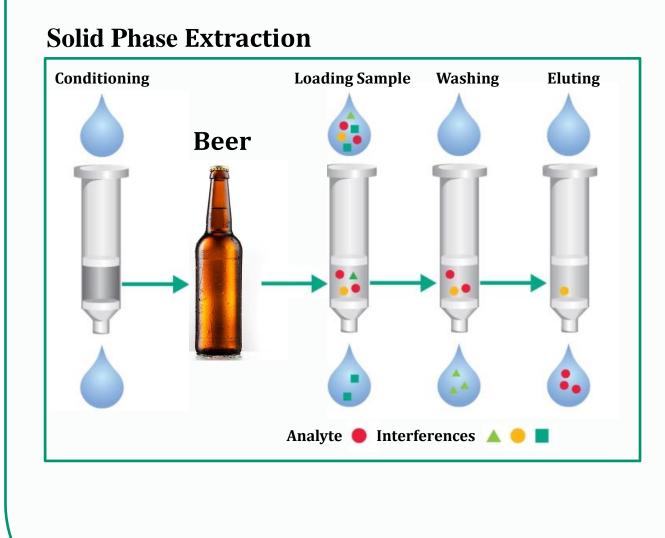


WORLD BREWING CONGRESS 2016 Update: Solid Phase Extraction of Isomerized Alpha Acids in Beer and Subsequent Spectrophotometric Measurement

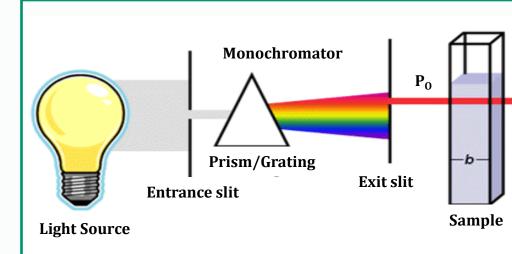
Introduction and Background

Commonly used methods for determining bitterness/iso- α -concentration in beer:

- 1. International bitter units (IBU), ASBC method
- Extraction in isooctane
 - $IBU = Abs_{275nm} * 50$
- 2. Iso-Alpha-Acid (IAA, archived method)
- Extraction in isooctane \rightarrow extraction in acid methanol \rightarrow transfer in alkaline methanol $IAA = (Abs_{255nm} \times 96.15) + 0.4]*3$
- 3. Iso- α -acid concentration via HPLC
- Solid phase extraction (SPE) \rightarrow high performance liquid chromatography \rightarrow compare peak area to known standard


Issues with existing bitterness methodology:

- IBU utilizes solvent (isooctane) that is difficult to dispose of
- IBU result is noisy, particularly for dry-hopped beers
- IAA is complicated, time-consuming and tedious to perform
- HPLC equipment is expensive

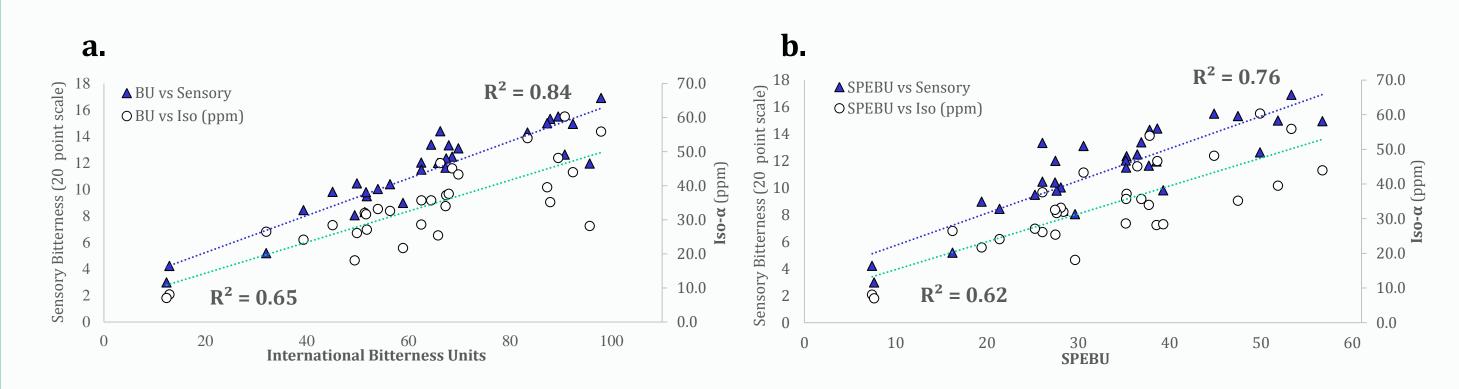

Development of solid phase extraction bitterness unit (SPEBU) method:

- Developed in 2011 by Wiestock et al.¹ to overcome issues with existing bitterness methodology and as an alternative to IBU and/or HPLC
- After two external ring studies (spring 2011 and spring 2013) reproducibility and repeatability statistics were determined to be to high and the ASBC Technical committee recommended the method be optimized

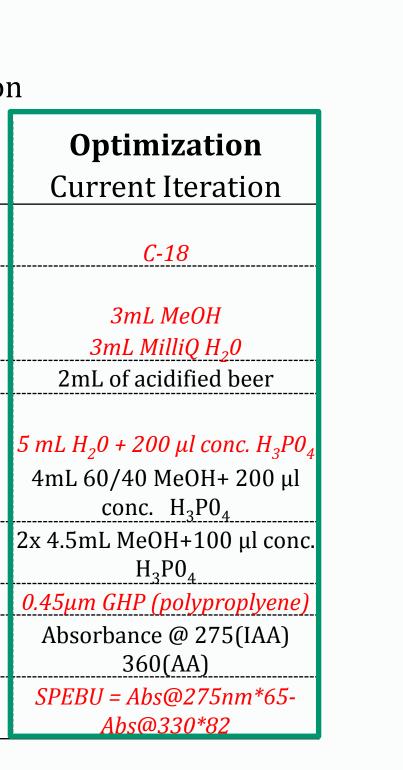

Figure 1: Outline of SPEBU technique

Measurement: Ultraviolet-visible spectrophotometer

Scott Lafontaine^a, Philip Wiestock^b, Thomas H. Shellhammer^a


a. Department of Food Science Oregon State University, Corvallis, OR 97333 b. Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, 13353 Berlin, Germany

Methodology


Table 1: SPEBU method breakdown and optimization evolution

	Round 1 Method	Round 2 Method						
	(Spring 2011)	(Spring 2013)						
Solid Phase Packing								
Material		<u>C-8</u>						
Pre-condition Steps Pre-Wash A:	2mL MeOH	2mL MeOH						
Pre-Wash B:	┟X <u>X</u> <u>4</u>	4mL MilliQ H ₂ 0						
Sample Loading	2mL of acidified beer	2mL of acidified beer						
Sample Wash								
Wash A:	10 mL H ₂ 0 + 200 μl conc. H ₃ P0 ₄		5 r					
Wash B:	5mL 60/40 MeOH + 200 μl conc.	5mL 60/40 MeOH+	4					
	H ₃ PO ₄	200 μl conc. H ₃ P0 ₄						
Sample Elute	3x 3mL MeOH + 100 μl conc. H ₃ P0 ₄	2x 4.5mL MeOH+100 μl conc. H ₃ P0 ₄	2x					
Syringe filter	0.45µm PVDF	0.45µm PVDF	0.					
Measurement	Absorbance @ 275nm	Absorbance @ 275(IAA) 360(AA)						
IAA Calculation	SPEBU = Abs@275nm * 75	SPEBU = Abs@275nm* 119-Abs@360*228	5					
*Proposed method changes are indicated in <i>Red Italics</i>								

Figure 2: **a.** Sensory bitterness and iso- α concentration vs IBU **b.** Sensory bitterness and iso- α concentration vs SPEBU

- 30 unique beers (ranging from 12 BU to 96 BU) were used to optimize the SPEBU method
- Figure 2b indicates that sensory bitterness and iso-α concentrations correlate moderately well with IBU ($R^2 = 0.84$ and 0.65, respectively)
- Figure 2c indicates that sensory bitterness and iso- α concentrations also correlate moderately well with the optimized SPEBU method (R² = 0.76 and 0.62, respectively)
- Taking the results in Figures 2b and 2c together, the SPEBU method is a comparable alternative the IBU method

Discussion and Results

Table 2: SPEBU optimization OSU internal repeatability and reproducibility comparison

Sample	No. of Labs	Grand _ Mean	Repeatability			Reproducibility				
Pair			Sr	cv _r	<i>r</i> 95	S _R	CV _R	R 95		
IAA										
B1/B2	20	20.3	1.28	6.3	3.58	7.03	34.67	19.69		
A1/A2	20	30.8	2.45	7.96	6.87	6.25	20.29	17.51		
C1/C2	16	34.0	1.94	5.69	5.42	7.44	21.89	20.84		
D1/D2	20	71.8	3.06	4.27	8.58	17.8	24.79	49.84		
SPEBU Ring	g Study First R	ound (Sprin	ng 2011) ²						
C/C ₁	16	8.69	0.52	6.03	1.47	1.59	18.23	4.44		
A/A_1	16	36.6	1.68	4.58	4.69	3.46	9.46	9.69		
B/B_1	16	57.1	1.52	2.67	4.26	5.38	9.43	15.06		
SPEBU Ring	<mark>g Study</mark> Second	Round (Sp	oring 20	13)						
A/A_1	20	12.9	2.0	15.2	5.5	9.0	69.4	25.1		
B/B_1	20	33.4	3.3	9.9	9.3	11.2	33.6	31.4		
C/C_1	20	54.1	7.9	14.5	22.0	16.5	30.5	46.2		
SPEBU Optimization Attempt (Spring 2015)										
A/A_1	2(7 ^b)	12.0	1.66	16.07	6.27	2.79	22.82	7.83		
B/B ₁	2(7 ^b)	60.7	2.10	3.46	5.88	4.81	7.92	13.46		

^aCalculations were made according to Methods of Analysis Statistical Analysis-4 ^bNo. of operators

• Repeatability and reproducibility statistics from the ring study conducted at Oregon State University in Spring 2015 (n=7) indicate that the optimization changes worked to reduce variation and improve the SPEBU method

Potential Benefits & Recommendations

- The SPEBU method appears comparable to the BU and IAA methodology
- No need for isooctane (more environmentally friendly and reduces hazardous waste)
- Ability to be automated
- Relatively inexpensive ~\$3.25-4.30 per sample; compared to IBU ~\$3.30 per sample (not including waste disposal and cost of instrumentation)
- An external ring study ($n \approx 20$) is needed to verify the small scale OSU ring study

Contact Authors

Scott Lafontaine **Phone #:** (541)-737-8026 **E-mail:** Scott.Lafontaine@oregonstate.edu Thomas H. Shellhammer **Phone #:** (541)-737-9308 **E-mail:** Tom.Shellhammer@oregonstate.edu

References

- 1. Wietstock, P. C. "SBU—A new and rapid method for determining bitterness in beer." 2012 MBAA World Brewing Congress, Analytical Session, Presentation 107.
- hopped Beers Using the Archived Iso-alpha-acids Spectrophotometric Method. R. Martin, Chair. Pages 253-254. doi:10.1094/ASBCJ-2010-0825-01

August 13-17, 2016 Sheraton Downtown Denver Denver, CO 80202, U.S.A.

World Brewing Congress

repeatability and reproducibility & to become an alternative ASBC MOA for beer bitterness

2. ASBC Technical Committee. Sub Committee 2010 report. Determination of Bitterness Units and Iso-alpha-acid Levels in Dry-