

Maria Josey

International Centre for Brewing and Distilling

Heriot-Watt University, U.K.

Completed Primary Fermentation

Benefits of serial re-pitching

- Saves time propagating yeast
 - Takes multiple days
- Cost saving
- Reduces first crop yeast use
 - New yeast crops exhibit abnormal fermentation profiles

Are breweries maximizing their crop number?

CASE STUDY: RE-PITCHED LAGER FERMENTATIONS

Lager Case Study: Experimental Design

Nonlinear Regression Analysis

Figure 2. Modelled density attenuation curve for nine repitched fermentations, the re-pitched number is noted by individual colours.

Did the length of the fermentation change between crop number?

An F-Test on the slope showed the crop number had no significant (p>0.05) correlations to on the midpoint

Ester levels post fermentation with respect to crop number

Crop Number

Figure 4. Ethyl ester levels in the beer at hour 122 in fermentation for each fermentation with an increasing crop number

Iso amyl alcohol levels compared to crop number

Figure 5. Iso amyl alcohol levels in the beer at hour 122 in fermentation for each fermentation with an increasing crop number

Was the crop number maximized?

- Density attenuation had no effect on crop number
 - up to crop number 9
- Flavour compound levels not correlated to crop number with the exception of ethyl octanoate, which was below flavour threshold

Future work

· Wort analysis along with fermentation monitoring

CASE STUDY: RE-PITCHED ALE FERMENTATIONS

Nonlinear Regression Analysis

Figure 6. Specific gravity attenuation data with a yeast crop that was re-pitched up to 9 times that was modelled using a four parameter nonlinear regression.

Two abnormal fermentations

Figure 7. Density attenuation for 9 serial re-pitched ale fermentations highlighting the two abnormal fermentations in red

Abnormal fermentations a result of under pitching

Figure 8. The midpoint of the fermentation compared to the initial absorbance relating to the quantity of yeast at the start of fermentation. The two data points in red are the noted abnormal fermentations

Midpoint (hr) for each serially re-pitched fermentation

An F-Test on the slope showed the crop number had no significant (p>0.05) correlations to on the midpoint

Figure 9. The midpoint for each re-pitched fermentation with the two abnormal fermentations in red.

Ester levels post fermentation with respect to crop number

Figure 10. Ethyl ester levels in the beer at 95% complete fermentations as the crop number increased.

Iso amyl alcohol levels with respect to crop number

Figure 11. Iso amyl alcohol levels in the beer at 95% complete fermentations as the crop number increased.

Trends in maltotriose consumption with lag period

 As the lag time increased, the maltotriose consumed by 95% complete fermentations decreased

Figure 12. Linear correlations between maltotriose consumed and the lag time of the fermentation

Was the crop number maximized?

- Same as the lager case study, the density attenuation not indicative of drifting in one direction based on crop number up to crop number 9
- Flavour compound levels were not correlated to the crop number

Future work

• Maltotriose deserves further investigation

Summary

- With both case studies, there was no indicators that the changes in density attenuation or flavour profiles were due to the crop number
- Potential to investigate extending the crop number

Literature

- Bühligen, F., P. Lindner, I. Fetzer, F. Stahl, T. Scheper, H. Harms and S. Müller (2014). "Analysis of aging in lager brewing yeast during serial repitching." Journal of Biotechnology **187**: 60-70.
- Bühligen, F., P. Rüdinger, I. Fetzer, F. Stahl, T. Scheper, H. Harms and S. Müller (2013). "Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis." Journal of Biotechnology **168**: 718-728.
- Cutaia, A. J., A.-J. Reid and R. A. Speers (2009). "Examination of the Relationships Between Original, Real and Apparent Extracts, and Alcohol in Pilot Plant and Commercially Produced Beers." <u>Journal of the Institute of Brewing</u> 115(4): 318-327.
- Jenkins, C. L., A. I. Kennedy, J. A. Hodgson, P. Thurston and K. A. Smart (2003). "Impact of Serial Repitching on Lager Brewing Yeast Quality." Journal of the American Society of Brewing Chemists **61**(1): 1-9.
- Miller, K. J., W. G. Box, D. M. Jenkins, C. Boulton, R. S. T. Linforth and K. A. Smart (2013). "Does Generation Number Matter? The Impact of Repitching on Wort Utilization." Journal of the American Society of Brewing Chemists **71**(4): 233-241.
- Powell, C. and T. Fischborn (2010). "Serial Repitching of Dried Lager Yeast." <u>Journal of the American Society of Brewing</u> <u>Chemists</u> 68(1): 48-56.
- Powell, C. D. and A. N. Diacetis (2007). "Long Term Serial Repitching and the Genetic and Phenotypic Stability of Brewer's Yeast." Journal of the Institute of Brewing **113**(1): 67-74.
- Smart, K. A. and S. Whisker (1996). "Effect of Serial Repitching on the Fermentation Properties and Condition of Brewing Yeast." Journal of the American Society of Brewing Chemists **54**(1): 41-44.
- Somani, A., F. Bealin-Kelly, B. Axcell and K. A. Smart (2012). "Impact of Storage Temperature on Lager Brewing Yeast Viability, Glycogen, Trehalose, and Fatty Acid Content." <u>Journal of the American Society of Brewing Chemists</u> 70(2): 123-130.
- Speers, R. A., P. Rogers and B. Smith (2003). "Non-Linear Modelling of Industrial Brewing Fermentations." <u>Journal of the</u> <u>Institute of Brewing</u> 109(3): 229-235.
- Speers, R. A. and S. Stokes (2009). "Effects of Vessel Geometry, Fermenting Volume and Yeast Repitching on Fermenting Beer." Journal of the Institute of Brewing **115**: 148-150.
- Speers, R. A., Y.-Q. Wan, Y.-L. Jin and R. J. Stewart (2006). "Effects of Fermentation Parameters and Cell Wall Properties on Yeast Flocculation." Journal of the Institute of Brewing **112**(3): 246-254.

Thanks and acknowledgments

- International Centre for Brewing and Distilling (ICBD)
 - Alex Speers (ICBD and Dalhousie)
 - Dawn Maskell
 - James Bryce
 - Annie Hill
 - Matthew Pauley
 - Margaux Huismann
- Scottish breweries
 - Production crew and technical staff
- Institute of Brewing and Distilling

Institute of Brewing & Distilling

Thank you for listening!

Maria Josey ICBD, Heriot-Watt University Edinburgh, U.K. Email: mej2@hw.ac.uk

Vicinal diketone levels post fermentation with respect to crop number (Lager Fermentations)

Figure 5. Vicinal diketone levels in the beer at hour 122 in fermentation for each fermentation with an increasing crop number

Vicinal diketones present post fermentation with respect to crop number (Ale Fermentations)

Figure 11. Vicinal diketone levels in the beer at 95% complete fermentations as the crop number increased.

Esters and Higher Alcohols Analysed in the Serial Re-Pitching with Lager Yeast Case Study

