

Blocking Layers in the Lautering Filter Cake – Influence of Particle Size and Shape

Jörg Engstle Chair for process systems engineering Technical University of Munich

ТЛП

Motivation

- Lautering and mashing as bottleneck for brew house operations
- Problems based on unsatisfactory raw material quality
- Layered cake structure
- Lautering still a kind of black box operation
- → Blocking mechanisms?
- \rightarrow Role of fine particles?
- → Influence of single layers?

Lautering – Procedural Characterization

- Solid liquid separation
- Filtration followed by filter cake washing
- Filtration mechanisms:
 - Cake filtration
 - Surface filtration
 - Deep bed filtration

ТЛП

Methods

Filtration performance:

- spent grains cake is cut in horizontal layers
- cake layer is transferred in filter cell
- wort is pressed through cake layer at given pressure
- measuring mass vs. time

Layer characterization:

- Particle size distribution \rightarrow laser diffraction / sieve analysis
- Particle form → image analysis
- X-ray Microtomography

Arrangement in Layers

- sedimentation \rightarrow formation of different layers
- Macroscopic: 2 layers
- different layer properties
 → measurement necessary
 - → influence on filtration performance
 - \rightarrow finer grid

µ-CT (X-Ray Microtomography)

- non invasive 3D-image analysis
- grey scale images due to density differences
- results:
 - porosity gradient
 - pore size gradient
 - varying properties along the cake height

Particle Size Distribution – Fine Fraction

Particle Size Distribution – Coarse Fraction

layers 3 - 7: the deeper the coarser

Flow through Cake Layers – Results

Role of Uppermost Layers

Particle Form Analysis

- Dynamic image analysis
- Static image analysis to eliminate random particle orientation

Particle Form Analysis

- Calculate EQPC as measure for size of projection area
- Calculate Major Axis Length as measure for particle form
- → Big Major Axis Length but small EQPC
 = elongated fibers
- → Big Major Axis Length and big EQPC
 = disklike particles

EQPC = Diameter of a circle of equal projection area

MajorAxisLength = Length of bigger axis in ellipse with same normalized second central moment

Size of Projection Area

Form Factor Axis Length

Estimated Particle Form

High Major Axis Length and high EQPC: \rightarrow Disk like particles

Blocking potential of disk like particles? → High compressibility

ПΠ

Conclusion

Blocking above false bottom because of disk like particles:

 \rightarrow limiting factor for first wort run off

Fine and jellylike top layer:

 \rightarrow limiting factor during sparging

Counteraction?

- \rightarrow Homogenization of the filter cake (raking)
- \rightarrow Equal distribution of all particles over the whole cake
- \rightarrow Axial mixing is more important than loosening of the cake